Saturday, March 13, 2004
Philips’ FluidFocus
Philips: Philips Research is demonstrating a unique variable-focus lens system that has no mechanical moving parts. Suited to a wide range of optical imaging applications, including such things as digital cameras, camera phones, endoscopes, home security systems and optical storage drives, Philips’ FluidFocus system mimics the action of the human eye using a fluid lens that alters its focal length by changing its shape. The new lens, which lends itself to high volume manufacturing, overcomes the fixed-focus disadvantages of many of today’s low-cost imaging systems.

The Philips FluidFocus lens consists of two immiscible (non-mixing) fluids of different refractive index (optical properties), one an electrically conducting aqueous solution and the other an electrically non-conducting oil, contained in a short tube with transparent end caps. The internal surfaces of the tube wall and one of its end caps are coated with a hydrophobic (water-repellent) coating that causes the aqueous solution to form itself into a hemispherical mass at the opposite end of the tube, where it acts as a spherically curved lens.

The shape of the lens is adjusted by applying an electric field across the hydrophobic coating such that it becomes less hydrophobic – a process called ‘electrowetting’ that results from an electrically induced change in surface-tension. As a result of this change in surface-tension the aqueous solution begins to wet the sidewalls of the tube, altering the radius of curvature of the meniscus between the two fluids and hence the focal length of the lens. By increasing the applied electric field the surface of the initially convex lens can be made completely flat (no lens effect) or even concave. As a result it is possible to implement lenses that transition smoothly from being convergent to divergent and back again.

Comments: Post a Comment

Powered by Blogger